

TPCRA STEM Tinkering Virtual Lab School Education Grade V - XII Technical Proposal

This Proposal Focuses on the following United Nations Sustainable Development Goals (UNSDG):

1. SDG: 4 Quality Education

2. SDG: 9 Industry, Innovation and Infrastructure

School Education Grade V - XII

Why STEM?

STEM (Science, Technology, Engineering and Math) a revolution in the Education system worldwide.

- Tinkering is intended towards life and creative skills.
- Helps all the students get the required competency in the subjects of Science and Math by their practical manifestation in Engineering and Technology.
- Empower students with the 21st century core skills like problem solving, innovation, collaboration,
- STEM encourages students to tinker and empowers them with open-ended experimenting, with no single solution.
- EdgeFX STEM kits have a directional curriculum that is not restrictive and provides students with the scope to create and innovate.
- EdgeFX offers a range of STEM kits from Electronics to Arduino coding to Robotics!

Learning outcome Level 1: Physical diagrams

provided for each and every project enables the first level of experiential hands on learning and troubleshooting skills for the students providing edutainment and creating enthusiasm amongst them.

QIdeate

♦ Innovate

A few Concepts Covered

- · Voltage, Current and Resistance
- Series and Parallel Circuits
- Short Circuits
- Good and Bad conductor of electricity
- Open and Closed circuits
- · Transistor as a switch
- Use of Fuse
- Polarity in circuits
- · Sound, Light and Mechanical energy
- · Motors & Electricity
- Amplification of current
- Logic Gates concepts
- Primary and Secondary color generation
- Latching Circuits
- · Learning to use IDE for Arduino
- Arduino Programming
- Building Arduino projects in simple steps
- Step by Step Building a Remote/ Robot with different Inputs/ Sensors

Learning Outcome

Learning outcome Level 3: Kindles the spirit of Innovation and Entrepreneurship amongst the students to create new projects based on their learning from the levels 1 & 2.

This is where the real magic begins!!

Learning outcome Level 2: Electronic circuits provided for each and every project enables the student to understand the logic and concept behind each and every project. Experiments and activities supplement additional experiential learning.

www.tpcraworld.com

TPCRA STEM Tinkering Virtual Lab Technical Proposal

Powered by Free course on Innovation Life cycle & Industry 4.0

S.No.	Name of the Product	Grade
1	STEM Electronics Design And Prototyping Virtual Lab powered by Real-time Circuit Design and Simulation with 75+ inventions. This Lab Focuses on SDG4 and SDG9. (Prerequisite: Nil)	Grade V till Grade XII
2	STEM Arduino Step By Step Programming, Design And Prototyping Virtual Lab powered by Real-time Circuit Design and Simulation. This Lab Focuses on SDG4 and SDG9. (Prerequisite: STEM Electronics)	Grade VIII till Grade XII
3	STEM Robotics Step By Step Design And Prototyping Virtual Lab powered by Real-time Circuit Design and Simulation. This Lab Focuses on SDG4 and SDG9. (Prerequisite: STEM Electronics)	Grade VIII till Grade XII

Note:

- 1. SDG4: Quality Education, SDG9: Industry, Innovation and Infrastructure
- 2. Refer Appendix for list of innovations

Appendix

	STEM Electronics Design And Prototyping Virtual Lab powered by Real-time Circuit Design and Simulation with 75+ inventions.		
Session No.	Торіс	Session No.	Торіс
	Introduction to STEM Electronics		To demonstrate conductor and insulator of electricity.
	To demonstrate the concept of open and closed circuits.	2	To demonstrate the use of fuse to make electrical circuits safer.
	To demonstrate the Push Button Switch, Buzzer function and how electricity is used to generate sound.		To demonstrate the function of a Resistor in series with a Buzzer.
	To demonstrate the LED function and how electricity is used to light up an LED.		To demonstrate how a series Resistor is used to protect an LED.
	To demonstrate how LED's like one-way valves let electricity flow only in one direction.		To demonstrate how electric circuits can be build to turn on multiple loads at a time without affecting the performance of the other load.
	To demonstrate the use of electronically controlled switches like Transistors using Push Button Switch for Input and Buzzer for Output.		To demonstrate if human body is a good conductor of electricity using human touch as Input and Buzzer as Output.
3	To demonstrate how transistor as a switch can control an LED output.	4	To demonstrate the amplification of current via darlington Transistor with LED as Output.
3	Get creative with circuits, demonstration of Push Button Switch in reverse function with Buzzer for Output.]	To demonstrate the function of a DC Motor and how electrical energy is converted into mechanical energy using a DC Motor.
	To try and see for your self if the switch is reverse function works for an LED output.	1	To demonstrate the use of fuse to make electrical circuits safer with a Motor Output.
	To demonstrate how electricity is converted into Sound, Light and Mechanical energy at the same time.		To demonstrate This OR That logic using Inputs as Push Button Switches and Output as Buzzer.
	To demonstrate the characteristics of voltage, current, and resistance in a parallel circuit.	6	To demonstrate This OR That logic using Inputs as Push Button Switches and Output as DC Motor.
5	To demonstrate the characteristics of voltage, current, and resistance in a parallel circuit.		To demonstrate This OR That logic using Inputs as Push Button Switches and Output as LED.
	To demonstrate the use of a free wheeling diode alongside the DC Motor in the DC Motor Block LU4.		
	To demonstrate the use of a capacitor along side the DC Motor in the DC Motor Block LU4.		
	To demonstrate This AND That logic using Inputs as Push Button Switches and Output as Buzzer.	8	To demonstrate the Dual LED function.
7	To demonstrate This AND That logic using Inputs as Push Button Switches and Output as DC Motor.		To demonstrate the RGB LED function.
	To demonstrate This AND That logic using Inputs as Push Button Switches and Output as LED.		
	To demonstrate the concept of open and closed circuits.		To demonstrate the working of a Reed Sensor with Buzzer Output.
9	To reiterate the Darlington Transistor concept with DC Motor as Output.		To demonstrate the working of a Reed Sensor with DC Motor Output.
	To demonstrate the amplification of current via darlington Transistor with Flashing LED as Output.	† <u> </u>	To demonstrate the working of a Reed Sensor Z9 with an LED Output.
	To demonstrate the function of Resistor 1K with a Dual LED Output.		To demonstrate the working of a Reed Sensor Z9 with a Flashing LED Output.
			To demonstrate the working of a Reed Sensor Z9 with a Dual LED Output.
	To demonstrate the working of an LDR Sensor, Resistor 10K and Transistor BC 557.	-	To demonstrate the function of a Slide Switch.
	To demonstrate the working of an LDR Sensor with a Fan Output.		To demonstrate how electric energy is converted into mechanical energy with the use of a another Input Block.
11	To demonstrate the working of an LDR Sensor with an LED Output.	12	To demonstrate how electric energy is converted into sound energy with the use of a another Input Block.
	To demonstrate the working of an LDR Sensor with a Flashing LED.		To study different LED Outputs.
	To demonstrate the working of an LDR Sensor with a Dual LED.		To demonstrate the Output using an Dual LED, when there is a change in the Input.
			To demonstrate the Output using an RGB LED, when there is a change in the Input.

www.tpcraworld.com

	To demonstrate the use of electronically controlled switches like Transistors using Push Button Switch for Input and Flashing LED for Output.	14	To demonstrate This OR That logic using Inputs as Push Button Switches and Output as Flashing LED.	
	To demonstrate the use of electronically controlled switches like Transistors using Slide Switch for Input and Buzzer for Output.		To demonstrate This OR That logic using Inputs as Slide Switches and Output as Buzzer.	
	To demonstrate the use of electronically controlled switches like Transistors using Slide Switch for Input and DC Motor for Output.		To demonstrate This OR That logic using Inputs as Slide Switches and Output as DC Motor.	
	To demonstrate the use of electronically controlled switches like Transistors using Slide Switch for Input and LED for Output.		To demonstrate This OR That logic using Inputs as Slide Switches and Output as LED.	
13	To demonstrate the use of electronically controlled switches like Transistors using Slide Switch for Input and Flashing LED for Output.		To demonstrate This OR That logic using Inputs as Slide Switches and Output as Flashing LED.	
	Demonstration of Push Button Switch in reverse function with Flashing LED for Output.		To demonstrate This OR That logic using Inputs as Push Button Switch and Slide Switch and Output as Flashing LED.	
	Demonstration of Slide Switch in reverse function with Buzzer for Output.		To demonstrate This AND That logic using Inputs as Push Button Switches and Output as Flashing LED.	
	Demonstration of Slide Switch in reverse function with DC Motor for Output.		To demonstrate This AND That logic using Inputs as Slide Switches and Output as Buzzer.	
	Demonstration of Slide Switch in reverse function with LED for Output.		To demonstrate This AND That logic using Inputs as Slide Switches and Output as DC Motor.	
	Demonstration of Slide Switch in reverse function with Flashing LED for Output.		To demonstrate This AND That logic using Inputs as Slide Switches and Output as LED.	
			To demonstrate This AND That logic using Inputs as Slide Switches and Output as Flashing LED.	
			To demonstrate This AND That logic using Inputs as Push Button Switch and Slide Switch and Output as Flashing LED.	
	To demonstrate a Latching circuit with Buzzer as the Output.			
15	To demonstrate a Latching Circuit with DC Motor as the Output.			
	To demonstrate a Latching Circuit with LED as the Output.			
	STEM Arduino Step By Step Programming, Design And Prototyping Virtual Lab powered by Real-time Circuit Design and Simulation.			

Session No.	Торіс	Session No.	Торіс
1	Introduction to the STEM Arduino	2	How to use Arduino IDE Part-1
3	How to use Arduino IDE Part-2	4	Basic Troubleshooting Part-1
5	Basic Troubleshooting Part-2	6	Power the Arduino Nano
7	To demonstrate the Push Button Switch, Buzzer and generate sound with Arduino Sketch	8	To generate Red flashing light
9	To generate Green flashing light	10	To generate Blue flashing light
11	To generate secondary color Yellow with the sum of two primary colors Red and Green	12	To generate secondary color Magenta with the sum of two primary colors Red and Blue
13	To generate secondary color Cyan with the sum of two primary colors Green and Blue	14	To generate White light with the sum of three primary colors Red, Green and Blue
15	To generate the final output. i.e. To generate a rainbow of colors, each with a unique Buzzer Sound.		

	STEM Robotics Step By Step Design And Prototyping Virtual Lab powered by Real-time Circuit Design and Simulation			
Session No.	Торіс	Session No.	Торіє	
1	Introduction to the STEM Electronics	2	How to design robotics electronic circuit and Battery	
3	How to design robotics mechanical part and procurement	4	Assembly the Transmitter and Receiver	
5	To build a bot which moves in the Left direction on pressing the Push Button Switch	6	To build a bot which moves in the Left and Right directions on pressing the respective Push Button Switches.	
7	To build a bot which moves in the Left, Right and Forward directions on pressing the respective Push Button Switches.	8	To build a bot which moves in the Left, Right, Forward and Reverse directions on pressing the respective Push Button Switches.	
9	To build a bot which moves in the Left, Right, Forward and Reverse directions on activating the respective Slide Switches, by moving the slider to your right.	10	To build a bot which moves in the Left, Right, Forward and Reverse directions on activating the respective Reed Switches with a magnet.	
11	To build a bot which moves in the Left direction using human touch as input	12	To build a bot which moves in the Left and Right directions on holding the respective Touch points	
13	To build a bot which moves in the Left, Right and Forward directions on holding the respective Touch Points	14	To build a bot which moves in the Left, Right, Forward and Reverse directions on holding the respective Touch Points.	
15	To build a bot which moves in the Left, Right, Forward and Reverse directions on activating four different inputs Reed Switch, Touch Point, Push Button Switch and Slide Switch respectively.			

